Tartalom
- A mozgás alapjai
- A szögsebesség-egyenlet
- Rotációs mozgási egyenletek
- Kapcsolódó mennyiségek és kifejezések
- Szögsebesség vs. lineáris sebesség
A mindennapi diskurzusban a "sebességet" és "sebességet" gyakran felcserélhetően használják. A fizikában azonban ezeknek a kifejezéseknek konkrét és különálló jelentése van. A "sebesség" az objektum térbeli elmozdulásának sebessége, és csak egy adott egység által megadott szám adja meg (gyakran méterben másodpercenként vagy mérföldenként óránként). A sebesség viszont egy irányhoz kapcsolt sebesség. A sebességet tehát skaláris mennyiségnek nevezzük, míg a sebességet vektormértéknek.
Amikor egy autó cipzárral halad egy autópálya mentén, vagy egy baseball sípolón keresztül a levegőn folyik, ezen tárgyak sebességét a talajhoz viszonyítva kell mérni, míg a sebesség több információt tartalmaz. Például, ha egy autóban sebességgel 70 mérföld / óra sebességgel halad az Egyesült Államok keleti partján, az Interstate 95-en, akkor az is hasznos tudni, hogy északkelet felé halad Boston vagy dél felé Florida felé. A baseballnál érdemes tudni, hogy y-koordinátája gyorsabban változik-e, mint az x-koordinátája (légygömb), vagy ha a fordított igaz (vonalvezetés). De mi lenne a gumiabroncsok forgása vagy az baseball forgása (forgása), amikor az autó és a labda a végső cél felé halad? Az ilyen típusú kérdésekre a fizika a következő fogalmat kínálja: szögsebesség.
A mozgás alapjai
A dolgok két fő módon mozognak a háromdimenziós fizikai térben: fordítás és forgatás. A fordítás az egész tárgy elmozdulása egyik helyről a másikra, például egy autó vezetésével New York City-től Los Angeles-ig. A forgatás viszont egy tárgy egy ciklusos mozgása egy rögzített pont körül. Számos tárgy, például a baseball a fenti példában, mindkét típusú mozgást mutat egyszerre; amikor egy légygömb áthaladt a levegőn az otthoni tányérról a kültéri kerítés felé, egy adott sebességgel a saját központja körül is forog.
A kétféle mozgás leírását különálló fizikai problémákként kezelik; vagyis amikor kiszámítja a távolságot, amelyben a golyó elhalad a levegőn, olyan tényezők alapján, mint például a kezdeti indulási szöge és a denevér elhagyásának sebessége, akkor figyelmen kívül hagyhatja a forgását, és amikor kiszámítja a forgását, akkor úgy tekintheti, mintha egyben ült. hely jelenlegi célokra.
A szögsebesség-egyenlet
Először, amikor "szögletes" dolgokról, akár sebességről, akár valamilyen más fizikai nagyságról beszél, akkor ismerje fel, hogy mivel szögekkel foglalkozik, körökben vagy azok egy részében való utazásról beszél. A geometria vagy a trigonometria alapján emlékeztethet arra, hogy egy kör kerülete annak átmérője szorozva a pi állandó értékének, vagy πd. (A pi értéke kb. 3.14159.) Ezt általában a kör sugara fejezi ki r, amely az átmérő felének fele, és így megkapja a kerületet 2πr.
Ezen kívül valószínűleg valahol megtanulta az utat, hogy egy kör 360 fokból áll. Ha S távolságot mozgat egy kör mentén, akkor a θ szögeltolódás egyenlő S / r-vel. Egy teljes fordulat tehát 2πr / r-t ad, ami csak 2π-t hagy. Ez azt jelenti, hogy a 360 ° -nál kisebb szögek lehetnek pi vagy más szóval radiánok.
Ezeket az információkat együttesen szögeket vagy körkörzeteket fejezheti ki, kivéve fokokat:
360 ° = (2π) radián, vagy
1 radián = (360 ° / 2π) = 57,3 °,
Míg a lineáris sebességet egységenként hosszban fejezik ki, addig a szögsebességet radiánban mérik, egységnyi idő alatt, általában másodpercenként.
Ha tudja, hogy egy részecske sebességgel körkörös úton halad v távolról r a kör közepétől, irányával v mindig merőleges a kör sugaraire, akkor a szögsebesség megírható
ω = v / r,
ahol ω a görög omega betű. A szögsebesség-egységek radián / másodperc; ezt az egységet "viszonyt másodpercnek" is lehet tekinteni, mert a v / r hozam m / s-t osztja m-vel, vagy s-1, ami azt jelenti, hogy a radiánok technikailag egység nélküli mennyiség.
Rotációs mozgási egyenletek
A szöggyorsulási képlet ugyanolyan lényeges módon származik, mint a szögsebesség-képlet: pusztán a kör sugarara merőleges irányú lineáris gyorsulás (ekvivalensen annak gyorsulása a kör alakú pálya érintőjének mentén bármely ponton), osztva a kör vagy egy kör sugara alapján, amely:
α = at/ r
Ezt a következők is adják:
α = ω / t
mert körkörös mozgáshoz, at = ωr / t = v / t.
α, mint valószínűleg tudod, a görög "alfa" betű A "t" alindex itt "érintőt" jelent.
Kíváncsi, de a forgómozgás egy másik gyorsulással büszkélkedhet, az úgynevezett centripetal („központ-keresi”) gyorsulást. Ezt a következő kifejezés adja:
egyc = v2/ r
Ez a gyorsulás arra a pontra irányul, amely körül a kérdéses tárgy forog. Ez furcsának tűnhet, mivel a tárgy sugara óta nem közeledik ehhez a középponthoz r megjavítva. Gondolj a centripetalális gyorsulásra mint egy szabad esésre, amelyben nem áll fenn a veszély, hogy a tárgy megüti a talajt, mert az objektum felé irányító erőt (általában gravitációt) pontosan eltolja az érintőleges (lineáris) gyorsulás, amelyet az első egyenlet ír le. ez a szekció. Ha egyc nem voltak egyenlők a egyt, az objektum vagy repül az űrbe, vagy hamarosan összeesik a kör közepén.
Kapcsolódó mennyiségek és kifejezések
Noha a szögsebességet általában, amint azt megjegyeztük, másodpercenként radiánban fejezik ki, előfordulhat, hogy a probléma megoldása előtt inkább másodpercenként fokokat kell használni vagy fordítva, vagy pedig fordítva, hogy fokoktól radiánokká váljanak.
Mondja el, hogy egy fényforrás másodpercenként 90 ° -kal elfordul állandó sebességgel. Mekkora a szögsebessége radiánban?
Először ne feledje, hogy 2π radián = 360 °, és állítson be egy arányt:
360 / 2π = 90 / x
360x = 180π
x = ω = π / 2
A válasz: fél pi sugárérték másodpercenként.
Ha azt mondják Önnek, hogy a fénysugár 10 méter távolságra van, akkor mi lenne a gerendák csúcsa lineáris sebessége v, szöggyorsulása α és annak centripetalális gyorsulása egyc?
Meg kell oldani v, felülről, v = ωr, ahol ω = π / 2 és r = 10m:
(π / 2) (10) = 5π rad / s = 15,7 m / s
Meg kell oldani α, egyszerűen adjon hozzá egy újabb időegységet a nevezőhöz:
α = 5π rad / s2
(Vegye figyelembe, hogy ez csak olyan problémák esetén működik, amelyeknél a szögsebesség állandó.)
Végül, felülről is, ac = v2/ r = (15,7)2/ 10 = 24,65 m / s2.
Szögsebesség vs. lineáris sebesség
Az előző problémára építve képzelje el magát egy nagyon nagy körhinta körül, amelynek valószínűtlen 10 km (10 000 méter) sugara van. Ez a köröm egy teljes fordulatot tesz 1 percenként és 40 másodpercenként, vagy 100 másodpercenként.
A forgástengelytől való távolságtól független szögsebesség és a nem lineáris körsebesség közötti különbség egyik következménye az, hogy két ember ugyanazt tapasztalja meg ω valószínűleg rendkívül eltérő fizikai tapasztalatokon mennek keresztül. Ha 1 méterre van a központtól, ha ez a feltételezett, hatalmas körút, akkor a lineáris (tangenciális) sebessége:
ωr = (2π rad / 100 s) (1 m) = 0,0628 m / s vagy 6,29 cm (kevesebb, mint 3 hüvelyk) másodpercenként.
De ha a szörny peremén vagy, akkor a lineáris sebessége:
ωr = (2π rad / 100 s) (10 000 m) = 628 m / s. Kb. 1406 mérföld / óra, gyorsabb, mint egy golyó. Várj csak!