Hogyan számolhatjuk a növekedési rátát vagy a százalékos változást

Posted on
Szerző: Monica Porter
A Teremtés Dátuma: 19 Március 2021
Frissítés Dátuma: 18 November 2024
Anonim
Hogyan számolhatjuk a növekedési rátát vagy a százalékos változást - Tudomány
Hogyan számolhatjuk a növekedési rátát vagy a százalékos változást - Tudomány

Tartalom

A százalékos változás egy általános módszer az időbeli változások, például a népesség növekedése miatti különbségek leírására. Három módszer használható a százalékos változás kiszámításához, a helyzettől függően: egyenes módszer, a középpont formula vagy a folyamatos keverési formula.


Egyenes vonalú százalékos változás

Az egyenes módszer jobb azoknál a változásoknál, amelyeket nem kell összehasonlítani más pozitív és negatív eredményekkel.

1. Írja be a százalékos változás egyenes vonalát, így van egy alapja, amelyből adatait hozzáadhatja. A képletben a "V0" a kezdeti értéket, míg a "V1" a változás utáni értéket képviseli. A háromszög egyszerűen csak a változást képviseli.

2. Cserélje le adatait a változókra. Ha nemesítő populációja 100-ról 150-re nőtt, akkor a kezdeti érték 100, a változás utáni következő értéke pedig 150.

3. Az abszolút változás kiszámításához vonjuk le a kezdeti értéket a következő értékből. A példában a 100 kivonása 150-ből 50 állat populációváltozását eredményezi.


4. Ossza meg az abszolút változást a kezdeti értékkel a változás mértékének kiszámításához. A példában az 50-el osztva 100-val kiszámítja a 0,5 változási sebességet.

5. Szorozzuk meg a változás arányát 100-tal, hogy átalakítsuk százalékos változássá. A példában 0,50-szeres 100-szoros átalakítja a változás arányát 50% -ra. Ha azonban a számokat úgy fordítják meg, hogy a népesség 150-ről 100-ra csökken, akkor a százalékos változás -33,3% lesz. Tehát 50% -os növekedés, majd 33,3% -os csökkenés visszaállítja a lakosságot az eredeti mérethez; ez az inkonrugencia szemlélteti a "végpont problémát", amikor egyenes módszer segítségével összehasonlítják az emelkedő vagy eső értékeket.


A középpont módszer

Ha összehasonlításokra van szükség, akkor a középpont-képlet gyakran jobb választás, mivel egyenletes eredményeket ad a változás irányától függetlenül, és elkerüli az egyenes módszerrel megállapított "végpont problémát".

1. Írja be a középpont százalékos változásának képletét, amelyben a "V0" a kezdeti értéket, a "V1" pedig a későbbi értéket képviseli. A háromszög "változást" jelent. Az egyetlen különbség a képlet és az egyenes vonalú képlet között az, hogy a nevező a kiindulási és a végső érték átlaga, nem pedig a kiindulási érték.

2. Helyezze be az értékeket a változók helyére. A lineáris módszerekkel a populációs példát használva a kezdeti és a későbbi értékek 100, illetve 150.

3. Az abszolút változás kiszámításához vonjuk le a kezdeti értéket a következő értékből. A példában a 100 kivonása a 150-ből 50 különbséget eredményez.

4. Adja hozzá a kezdő és az azt követő értékeket a nevezőbe, és ossza meg kettővel az átlagérték kiszámításához. A példában a 150 plusz 100 hozzáadása és a 2-vel való elosztás átlagértéke 125.

5. Ossza meg az abszolút változást az átlagértékkel, hogy kiszámítsa a változás közepes pontját. A példában az 50 elosztása 125-gyel 0,4-es változási sebességet eredményez.

6. Szorozzuk meg a változás sebességét 100-tal, hogy százalékba konvertáljuk. A példában 0,4-szeres 100-ban számoljuk a középpont százalékos változását 40 százalékkal. A lineáris módszerrel ellentétben, ha megfordítja az értékeket úgy, hogy a népesség 150-ről 100-ra csökken, akkor -40% -os százalékos változást kap, amely csak az előjel szerint különbözik egymástól.

Átlagos éves folyamatos növekedési ráta

A folyamatos keverési formula hasznos az átlagos éves növekedési ütemnél, amely folyamatosan változik. Népszerű, mert a végső értéket a kiindulási értékhez köti, ahelyett, hogy a kezdeti és a végső értékeket külön-külön megadná - a végső értéket megadja con. Például az a kijelentés, hogy a populáció 15 állatnál nőtt, nem olyan értelmes, mintha azt állítanánk, hogy 650 százalékos növekedést mutatott a kezdeti tenyészpárhoz képest.

1 az éves növekedési ráta.

2. Helyezze a változók aktuális értékeit. Folytatva a példát, ha a népesség 3,62 év alatt nőtt, akkor a jövőben helyettesítse a 3,62-et, és ugyanazt a 100 kezdeti és 150 későbbi értéket használja.

3. Ossza el a jövőbeni értéket a kezdeti értékkel, hogy kiszámítsa az összes növekedési tényezőt a számlálóban. A példában a 150-el osztva 100-val 1,5 növekedési tényezőt kapunk.

    4. A teljes növekedési arány kiszámításához vegye figyelembe a növekedési faktor természetes naplóját. A példában írja be az 1.5 értéket egy tudományos számológépbe, és nyomja meg az "ln" gombot, hogy 0,41-et kapjon.

    5. Az átlagos éves növekedési ütem kiszámításához ossza meg az eredményt az években megadott idővel. A példában a 0,41 és a 3,62 osztva az éves átlagos növekedési ráta 0,11 egy folyamatosan növekvő népességben.

    6. Szorozzuk meg a növekedési rátát 100-tal, hogy százalékossá alakítsuk. A példában a 0,11-szoros szorzat 100-szorosával az éves átlagos növekedési ráta 11%.

    tippek